Based on the article "Exact Bayesian Analysis of Two Proportions"

wherever practical the same notations as in the article are used.
compute Bayesian median and confidence interval for RD, RR, and OR
by Alexandre Buer, Cytel Corp. 2014

bayesCI <- function(c0, s0, c1, s1, alpha) {
 # use beta(1,1) for both beta_0 and beta_1
 a0 = 1; b0 = 1; a1 = 1; b1 = 1
 beta0 <- function(x) { dbeta(x, a0+c0, b0+s0-c0) }
 BETA1 <- function(x) { pbeta(x, a1+c1, b1+s1-c1) }
 FPint <- function(fp) {
 integrate(function(R0) { BETA1(fp(R0)) * beta0(R0)}, 0, 1) # article prescribes here Rmin and Rmax
 # but using (0, 1) allows to reproduce Table 1 for RD
 }
 # force fp function to return a number between 0 and 1
 clip01 <- function(x) { (x > 0)*x - (x-1 > 0)*(x-1) }
 # print(" Table 1 "); print("RD F(RD)"
 # F_RD <- function(RD) {
 # FPint(function(r0) clip01(r0 + RD))
 # }

 rd_range = seq(-1, 1, length.out=41)
 for (rd in rd_range) {
 fixed <- as.numeric(F_RD(rd)$value)
 cat(rd, fixed, sep=" ", fill=TRUE)
 }
 F_OR <- function(OR) {
 FPint(function(r0) {clip01(OR*r0/(1+(OR-1)*r0)) })
 }
 # pname is the name of measure, fp(P, R0) = R1 is the measure function
 # (Plow,Pup) form the search domain for the parameter P, e.g. for RD (-1,1)
 compCI <- function(pname, fp, plow, pup){
 cat(pname, " ")
 FP <- function(P) { FPint(function(r0) { clip01(fp(P, r0)) })
 for (val in c(0.5*alpha, 0.5, 1-0.5*alpha)) {
 rd <- as.numeric(
 uniroot(function(x) FP(x)$value - val,
 lower = plow, upper = pup, tol = 1e-9)$root)
 cat(sprintf("%.5f", rd), " ", fill = TRUE)
 }
 }
 cat("measure", "low", "median", "high", "confidence", sep = " ", fill = T)
 }

 compCI("RD", function(p,r) {r+p}, -1, 1) # Risk Difference RD
 compCI("RR", function(p,r) {r*p}, 1e-6, 1e6) # Risk Ratio P=RR, r=R0
 compCI("OR", function(p,r) {p*r/(1+(p-1)*r)}, 1e-6, 1e6) # Odds Ratio P=OR, r=R0
}

measure, "low", "median", "high", "confidence", sep = " ", fill = T)
compCI("RD", function(p,r) {r+p}, -1, 1) # Risk Difference RD
compCI("RR", function(p,r) {r*p}, 1e-6, 1e6) # Risk Ratio P=RR, r=R0
compCI("OR", function(p,r) {p*r/(1+(p-1)*r)}, 1e-6, 1e6) # Odds Ratio P=OR, r=R0

bayesCI(5, 20, 8, 10, 0.05)
bayesCI(5, 20, 8, 10, 0.01)
bayesCI(5, 20, 8, 10, 0.001)
cat("Risk measures for r1=8/24 and r0 = 9/53 as per table 2 (Phenoxy acid) and fig. 3")
bayesCI(9, 53, 8, 24, 0.05)
cat("Risk measures for r1=3/19 and r0 = 0/44 as per table 2 (Cholophenols)")
bayesCI(0, 44, 3, 19, 0.05)